Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302978

RESUMO

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Assuntos
Diabetes Mellitus Tipo 2 , Angiopatias Diabéticas , Nefropatias Diabéticas , Glucuronidase , Animais , Camundongos , Glicocálix/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/prevenção & controle , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacologia , Albuminas/farmacologia , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Angiopatias Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
2.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895856

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection. In this study, we investigated the effects of chemically modified heparin derivatives with reduced anticoagulant activities. These derivatives were used as experimental probes to explore the structure-activity relationships. Precursor fractions of porcine heparin, obtained during the manufacture of conventional pharmaceutical heparin with decreased anticoagulant activities, were also explored. Interestingly, these modified heparin derivatives and precursor fractions not only prevented cell death but also inhibited the ZIKV replication of infected neural progenitor cells grown as neurospheres. These effects were observed regardless of the specific sulfation position or overall charge. Furthermore, the combination of heparin with Sofosbuvir, an antiviral licensed for the treatment of hepatitis C (HCV) that also belongs to the same Flaviviridae family as ZIKV, showed a synergistic effect. This suggested that a combination therapy approach involving heparin precursors and Sofosbuvir could be a potential strategy for the prevention or treatment of ZIKV infections.

3.
Biology (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36979099

RESUMO

Therapies that target the multicellular pathology of central nervous system (CNS) disease/injury are urgently required. Modified non-anticoagulant heparins mimic the heparan sulphate (HS) glycan family and have been proposed as therapeutics for CNS repair since they are effective regulators of numerous cellular processes. Our in vitro studies have demonstrated that low-sulphated modified heparan sulphate mimetics (LS-mHeps) drive CNS repair. However, LS-mHeps are derived from pharmaceutical heparin purified from pig intestines, in a supply chain at risk of shortages and contamination. Alternatively, cellular synthesis of heparin and HS can be achieved using mammalian cell multiplex genome engineering, providing an alternative source of recombinant HS mimetics (rHS). TEGA Therapeutics (San Diego) have manufactured rHS reagents with varying degrees of sulphation and we have validated their ability to promote repair in vitro using models that mimic CNS injury, making comparisons to LS-mHep7, a previous lead compound. We have shown that like LS-mHep7, low-sulphated rHS compounds promote remyelination and reduce features of astrocytosis, and in contrast, highly sulphated rHS drive neurite outgrowth. Cellular production of heparin mimetics may, therefore, offer potential clinical benefits for CNS repair.

4.
Glia ; 71(7): 1683-1698, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945189

RESUMO

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Assuntos
Doenças do Sistema Nervoso Central , Encefalomielite Autoimune Experimental , Animais , Camundongos , Cuprizona/toxicidade , Sulfatos/efeitos adversos , Oligodendroglia/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Corpo Caloso/patologia , Doenças do Sistema Nervoso Central/patologia , Heparitina Sulfato/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Bainha de Mielina/patologia
5.
Anal Methods ; 15(11): 1461-1469, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36876452

RESUMO

The fine structure of heparan sulfate (HS), the glycosaminoglycan polysaccharide component of cell surface and extracellular matrix HS proteoglycans, coordinates the complex cell signalling processes that control homeostasis and drive development in multicellular animals. In addition, HS is involved in the infection of mammals by viruses, bacteria and parasites. The current detection limit for fluorescently labelled HS disaccharides (low femtomole; 10-15 mol), has effectively hampered investigations of HS composition in small, functionally-relevant populations of cells and tissues that may illuminate the structural requirements for infection and other biochemical processes. Here, an ultra-high sensitivity method is described that utilises a combination of reverse-phase HPLC, with tetraoctylammonium bromide (TOAB) as the ion-pairing reagent and laser-induced fluorescence detection of BODIPY-FL-labelled disaccharides. The method provides an unparalleled increase in the sensitivity of detection by ∼six orders of magnitude, enabling detection in the zeptomolar range (∼10-21 moles; <1000 labelled molecules). This facilitates determination of HS disaccharide compositional analysis from minute samples of selected tissues, as demonstrated by analysis of HS isolated from the midguts of Anopheles gambiae mosquitoes that was achieved without approaching the limit of detection.


Assuntos
Culicidae , Dissacarídeos , Animais , Dissacarídeos/análise , Dissacarídeos/química , Cromatografia Líquida de Alta Pressão/métodos , Heparitina Sulfato/análise , Heparitina Sulfato/química , Mamíferos
6.
ACS Cent Sci ; 9(3): 381-392, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968539

RESUMO

Heparin is a polydisperse, heterogeneous polysaccharide of the glycosaminoglycan (GAG) class that has found widespread clinical use as a potent anticoagulant and is classified as an essential medicine by the World Health Organization. The importance of rigorous monitoring and quality control of pharmaceutical heparin was highlighted in 2008, when the existing regulatory procedures failed to identify a life-threatening adulteration of pharmaceutical heparin with oversulfated chondroitin sulfate (OSCS). The subsequent contamination crisis resulted in the exploration of alternative approaches for which the use of multidimensional nuclear magnetic resonance (NMR) spectroscopy techniques and multivariate analysis emerged as the gold standard. This procedure is, however, technically demanding and requires access to expensive equipment. An alternative approach, utilizing attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) combined with multivariate analysis, has been developed. The method described enables the differentiation of diverse GAG samples, the classification of samples of distinct species provenance, and the detection of both established heparin contaminants and alien polysaccharides. This methodology has sensitivity comparable to that of NMR and can facilitate the rapid, cost-effective monitoring and analysis of pharmaceutical heparin. It is therefore suitable for future deployment throughout the supply chain.

7.
Cell Rep ; 42(1): 111930, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640356

RESUMO

Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.


Assuntos
Fator Plaquetário 4 , Proteoglicanas , Fator Plaquetário 4/metabolismo , Receptores de Quimiocinas , Quimiocinas/metabolismo , Glicosaminoglicanos , Matriz Extracelular/metabolismo
8.
Chemistry ; 29(1): e202202599, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36134621

RESUMO

Infection of host cells by SARS-CoV-2 begins with recognition by the virus S (spike) protein of cell surface heparan sulfate (HS), tethering the virus to the extracellular matrix environment, and causing the subunit S1-RBD to undergo a conformational change into the 'open' conformation. These two events promote the binding of S1-RBD to the angiotensin converting enzyme 2 (ACE2) receptor, a preliminary step toward viral-cell membrane fusion. Combining ligand-based NMR spectroscopy with molecular dynamics, oligosaccharide analogues were used to explore the interactions between S1-RBD of SARS CoV-2 and HS, revealing several low-specificity binding modes and previously unidentified potential sites for the binding of extended HS polysaccharide chains. The evidence for multiple binding modes also suggest that highly specific inhibitors will not be optimal against protein S but, rather, diverse HS-based structures, characterized by high affinity and including multi-valent compounds, may be required.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Ligação Proteica , Domínios Proteicos , Simulação de Dinâmica Molecular , Polissacarídeos , Sítios de Ligação , Glicoproteína da Espícula de Coronavírus/química
10.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35647275

RESUMO

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

11.
Mol Nutr Food Res ; 66(7): e2100950, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072983

RESUMO

SCOPE: Ample evidence supports the prominent role of gut-liver axis in perpetuating pathological networks of high-fat high-fructose (HFF) diet induced metabolic disorders, however, the molecular mechanisms are still not fully understood. Herein, this study aims to present a holistic delineation and scientific explanation for the crosstalk between the gut and liver, including the potential mediators involved in orchestrating the metabolic and immune systems. METHODS AND RESULTS: An experimental obesity-associated metaflammation rat model is induced with a HFF diet. An integrative multi-omics analysis is then performed. Following the clues illustrated by the multi-omics discoveries, putative pathways are subsequently validated by RT-qPCR and Western blotting. HFF diet leads to obese phenotypes in rats, as well as histopathological changes. Integrated omics analysis shows that there exists a strong interdependence among gut microbiota composition, intestinal metabolites, and innate immunity regulation in the liver. Some carboxylic acids may contribute to gut-liver communication. Moreover, activation of the hepatic LPS-TLR4 pathway in obesity is confirmed. CONCLUSION: HFF-intake disturbs gut flora homeostasis. Crosstalk between gut microbiota and innate immune system mediates hepatic metaflammation in obese rats, associated with LPS-TLR4 signaling pathway activation. Moreover, α-hydroxyisobutyric acid and some other organic acids may play a role as messengers in the liver-gut axis.


Assuntos
Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Homeostase , Metaboloma , Modelos Teóricos , Obesidade/etiologia , Obesidade/metabolismo , Ratos
12.
Sci Adv ; 7(52): eabl6026, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936441

RESUMO

Heparan sulfate (HS) polysaccharides are master regulators of diverse biological processes via sulfated motifs that can recruit specific proteins. 3-O-sulfation of HS/heparin is crucial for anticoagulant activity, but despite emerging evidence for roles in many other functions, a lack of tools for deciphering structure-function relationships has hampered advances. Here, we describe an approach integrating synthesis of 3-O-sulfated standards, comprehensive HS disaccharide profiling, and cell engineering to address this deficiency. Its application revealed previously unseen differences in 3-O-sulfated profiles of clinical heparins and 3-O-sulfotransferase (HS3ST)­specific variations in cell surface HS profiles. The latter correlated with functional differences in anticoagulant activity and binding to platelet factor 4 (PF4), which underlies heparin-induced thrombocytopenia, a known side effect of heparin. Unexpectedly, cells expressing the HS3ST4 isoenzyme generated HS with potent anticoagulant activity but weak PF4 binding. The data provide new insights into 3-O-sulfate structure-function and demonstrate proof of concept for tailored cell-based synthesis of next-generation heparins.

13.
Front Pharmacol ; 12: 660490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421587

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure the dimerization of angiotensin-converting enzyme 2 (ACE2), the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate. Fenofibric acid also destabilized the receptor-binding domain (RBD) of the viral spike protein and inhibited RBD binding to ACE2 in enzyme-linked immunosorbent assay (ELISA) and whole cell-binding assays. Fenofibrate and fenofibric acid were tested by two independent laboratories measuring infection of cultured Vero cells using two different SARS-CoV-2 isolates. In both settings at drug concentrations, which are clinically achievable, fenofibrate and fenofibric acid reduced viral infection by up to 70%. Together with its extensive history of clinical use and its relatively good safety profile, this study identifies fenofibrate as a potential therapeutic agent requiring an urgent clinical evaluation to treat SARS-CoV-2 infection.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33763145

RESUMO

The progressive increase of metabolic diseases underscores the necessity for developing effective therapies. Although we found Tian-Huang formula (THF) could alleviate metabolic disorders, the underlying mechanism remains to be fully understood. In the present study, firstly, male Sprague-Dawley rats were fed with high-fat diet plus high-fructose drink (HFF, the diet is about 60% of calories from fat and the drink is 12.5% fructose solution) for 14 weeks to induce hepatosteatosis and glucose intolerance and then treated with THF (200 mg/kg) for 4 weeks. Then, metabolomics analysis was performed with rat liver samples and following the clues illustrated by Ingenuity Pathway Analysis (IPA) with the metabolomics discoveries, RT-qPCR and Western blotting were carried out to validate the putative pathways. Our results showed that THF treatment reduced the body weight from 735.1 ± 81.29 to 616.3 ± 52.81 g and plasma triglyceride from 1.5 ± 0.42 to 0.88 ± 0.33 mmol/L; meanwhile, histological examinations of hepatic tissue and epididymis adipose tissue showed obvious alleviation. Compared with the HFF group, the fasting serum insulin and blood glucose level of the THF group were improved from 20.77 ± 6.58 to 9.65 ± 5.48 mIU/L and from 8.96 ± 0.56 to 7.66 ± 1.25 mmol/L, respectively, so did the serum aspartate aminotransferase, insulin resistance index, and oral glucose tolerance (p = 0.0019, 0.0053, and 0.0066, respectively). Furthermore, based on a list of 32 key differential endogenous metabolites, the molecular networks generated by IPA suggested that THF alleviated glucose intolerance and hepatosteatosis by activating phosphatidylinositol-3 kinase (PI3K) and low-density lipoprotein receptor (LDL-R) involved pathways. RT-qPCR and Western blotting results confirmed that THF alleviated hepatic steatosis and glucose intolerance partly through protein kinase B- (AKT-) sterol regulatory element-binding protein (SREBP) nexus. Our findings shed light on molecular mechanisms of THF on alleviating metabolic diseases and provided further evidence for developing its therapeutic potential.

15.
Br J Pharmacol ; 178(3): 626-635, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33125711

RESUMO

BACKGROUND AND PURPOSE: Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. EXPERIMENTAL APPROACH: Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. KEY RESULTS: All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 µg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. CONCLUSION AND IMPLICATIONS: This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.


Assuntos
Heparina/farmacologia , SARS-CoV-2/crescimento & desenvolvimento , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Heparina/metabolismo , Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/farmacologia , Ligação Proteica/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Ensaio de Placa Viral , Tratamento Farmacológico da COVID-19
16.
Thromb Haemost ; 120(12): 1700-1715, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33368089

RESUMO

The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.


Assuntos
Anticoagulantes/farmacologia , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Enoxaparina/farmacologia , Heparina/farmacologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Anticoagulantes/uso terapêutico , Antivirais/uso terapêutico , Chlorocebus aethiops , Enoxaparina/uso terapêutico , Heparina/uso terapêutico , Humanos , Simulação de Dinâmica Molecular , Nebulizadores e Vaporizadores , Ligação Proteica , Conformação Proteica , Domínios Proteicos/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Relação Estrutura-Atividade , Células Vero , Internalização do Vírus
17.
Anal Chem ; 92(15): 10228-10232, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32658472

RESUMO

Heparan sulfate and heparin are highly acidic polysaccharides with a linear sequence, consisting of alternating glucosamine and hexuronic acid building blocks. The identity of hexuronic acid units shows a variability along their sequence, as d-glucuronic acid and its C5 epimer, l-iduronic acid, can both occur. The resulting backbone diversity represents a major challenge for an unambiguous structural assignment by mass spectrometry-based techniques. Here, we employ cryogenic infrared spectroscopy on mass-selected ions to overcome this challenge and distinguish isomeric heparan sulfate tetrasaccharides that differ only in the configuration of their hexuronic acid building blocks. High-resolution infrared spectra of a systematic set of synthetic heparan sulfate stereoisomers were recorded in the fingerprint region from 1000 to 1800 cm-1. The experiments reveal a characteristic combination of spectral features for each of the four diastereomers studied and imply structural modularity in the vibrational fingerprints. Strong spectrum-structure correlations were found and rationalized by state-of-the-art quantum chemical calculations. The findings demonstrate the potential of cryogenic infrared spectroscopy to extend the mass spectrometry-based toolkit for the sequencing of heparan sulfate and structurally related biomolecules.

19.
Nat Commun ; 11(1): 1481, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198425

RESUMO

Despite evident regulatory roles of heparan sulfate (HS) saccharides in numerous biological processes, definitive information on the bioactive sequences of these polymers is lacking, with only a handful of natural structures sequenced to date. Here, we develop a "Shotgun" Ion Mobility Mass Spectrometry Sequencing (SIMMS2) method in which intact HS saccharides are dissociated in an ion mobility mass spectrometer and collision cross section values of fragments measured. Matching of data for intact and fragment ions against known values for 36 fully defined HS saccharide structures (from di- to decasaccharides) permits unambiguous sequence determination of validated standards and unknown natural saccharides, notably including variants with 3O-sulfate groups. SIMMS2 analysis of two fibroblast growth factor-inhibiting hexasaccharides identified from a HS oligosaccharide library screen demonstrates that the approach allows elucidation of structure-activity relationships. SIMMS2 thus overcomes the bottleneck for decoding the informational content of functional HS motifs which is crucial for their future biomedical exploitation.


Assuntos
Heparitina Sulfato/química , Íons , Espectrometria de Massas/métodos , Oligossacarídeos/química , Epitopos , Fatores de Crescimento de Fibroblastos/metabolismo , Ácido Glucurônico/química , Heparina , Heparitina Sulfato/metabolismo , Análise de Sequência/métodos , Relação Estrutura-Atividade , Sulfotransferases/metabolismo
20.
Biochem Biophys Res Commun ; 523(2): 336-341, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31866013

RESUMO

The ß-galactoside-binding protein, galectin-3, is extensively involved in cancer development, progression and metastasis through multiple mechanisms. Inhibition of the galectin-3-mediated actions is increasingly considered as a promising therapeutic approach for cancer treatment. Our early studies have identified several novel galectin-3 binding inhibitors from chemical modification of the anticoagulant drug heparin. These heparin-derived galectin-3 binding inhibitors, which show no anticoagulant activity and bind to the galectin-3 canonical carbohydrate-binding site, induce galectin-3 conformational changes and inhibit galectin-3-mediated cancer cell adhesion, invasion and angiogenesis in vitro and reduce metastasis in mice. In this study, we determined the binding affinities of these heparin-derived ligands to galectin-3 using an isothermal titration calorimetry (ITC) ligand displacement approach. Such ITC experiments showed that the 2-de-O-sulphated, N-acetylated (compound E) and 6-de-O-sulphated, N-acetylated (F) heparin-derived ligands and their ultra-low molecular weight sub-fractions (E3 and F3) bind to galectin-3 with KD ranging from 0.96 to 1.32 mM.Differential scanning fluorimetry analysis revealed that, in contrast to the disaccharide ligand, N-acetyl-lactosamine, which binds to the fully folded form of galectin-3 and promotes galectin-3 thermal stability, the heparin-derived ligands preferentially bind to the unfolded state of galectin-3 and cause destabilization of the galectin-3 protein structure. These results provide molecular insights into the interaction of galectin-3 with the heparin-derived ligands and explain the previously demonstrated in vitro and in vivo effects of these binding inhibitors on galectin-3-mediated cancer cell behaviours.


Assuntos
Galectina 3/antagonistas & inibidores , Heparina/análogos & derivados , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Proteínas Sanguíneas , Calorimetria , Fluorometria , Galectina 3/química , Galectina 3/metabolismo , Galectinas , Heparina/metabolismo , Heparina/farmacologia , Humanos , Ligantes , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...